Forecasting Palladium Price Using GM(1,1)
Authors
Abstract:
Palladium is an element of PGM group that has significant physical properties. This leads to more attention to this metal. Due to vast applications of palladium in industry and its usage in jewelry, its price plays an important role in economic. Therefore, forecasting its price is crucial subject in economic and engineering design. This paper proposes the model GM(1,1) to predict the Palladium price. The method is applied in experimental data for two recent years. The results show that the method is robust and accurate.
similar resources
Forecasting copper price using gene expression programming
Forecasting the prices of metals is important in many aspects of economics. Metal prices are also vital variables in financial models for revenue evaluation, which forms the basis of an effective payment regime using resource policymakers. According to the severe changes of the metal prices in the recent years, the classic estimation methods cannot correctly estimate the volatility. In order to...
full textSimulating and Forecasting OPEC Oil Price Using Stochastic Differential Equations
The main purpose of this paper is to provide a quantitative analysis to investigate the behavior of the OPEC oil price. Obtaining the best mathematical equation to describe the price and volatility of oil has a great importance. Stochastic differential equations are one of the best models to determine the oil price, because they include the random factor which can apply the effect of different ...
full textStock Price Forecasting
The especial importance of capital market in countries is undeniable in economic development via effective capital conduct and optimum resources allocation. Investment in capital market requires decision making in new stock exchanges, and accessing information in the case of future status of capital market. Undoubtedly, nowadays most part of capital is exchanged via stock exchange all around ...
full textGold Price Forecasting Using ARIMA Model
This study gives an inside view of the application of ARIMA time series model to forecast the future Gold price in Indian browser based on past data from November 2003 to January 2014 to mitigate the risk in purchases of gold. Hence, to give guideline for the investor when to buy or sell the yellow metal. This financial instrument has gained a lot of momentum in recent past as Indian economy is...
full textForecasting Price increments using an Artificial Neural Network
Financial forecasting is a difficult task due to the intrinsic complexity of the financial system. A simplified approach in forecasting is given by “black box” methods like neural networks that assume little about the structure of the economy. In the present paper we relate our experience using neural nets as financial time series forecast method. In particular we show that a neural net able to...
full textForecasting Crude Oil Price Volatility
We use high-frequency intra-day realized volatility to evaluate the relative forecasting performance of several models for the volatility of crude oil daily spot returns. Our objective is to evaluate the predictive ability of time-invariant and Markov switching GARCH models over different horizons. Using Carasco, Hu and Ploberger (2014) test for regime switching in the mean and variance of the ...
full textMy Resources
Journal title
volume 3 issue 1
pages 1- 12
publication date 2018-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023